
1. Introduction
For thousands of years humans have relied on reservoirs—regulated natural lakes and humanmade ones, for 
water supply, irrigation, and more recently hydropower generation (Lehner et al., 2011). The cumulative storage 
capacity of global reservoirs now reaches over 8,000 km 3, which is roughly twice as much as the global annual 
river runoff (Wang et al., 2022). By regulating river flow, these reservoirs make a notable contribution to global 
water, food, and energy security and to reducing flood risks. For example, reservoirs provide more than 40% of 
global irrigation water (Biemans et al., 2011).

Reservoir storage capacity is steadily being lost to the gradual accumulation of the incoming sediment load from 
rivers, which is due to the reducing velocity in the connection between rivers and the reservoir with limited force 
to move sediment particles (Asthana & Khare, 2022). Sediment-induced reservoir capacity losses accumulate 
over time and are particularly notable in aging reservoirs. For example, in the United States, a recent study used 
an upscaling method and estimated that reservoir storage per capita has declined by over one-third with a wide 
range of uncertainty during the past 50  years as a combined result of sedimentation and population growth 
(Randle et al., 2021). Additionally, sedimentation rates can vary substantially from one reservoir to another owing 
to a number of factors, such as soil, land cover, land disturbance (e.g., landslides and wildfires), contributing area, 
and hydroclimate (Obialor et al., 2019; Sankey et al., 2017). Accurate knowledge of reservoir sedimentation rates 
is critical for sustainable water resources management, both now and in the future.
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Sedimentation rates are poorly monitored due to observation and modeling challenges. The most direct meas-
urement is through periodic lake bathymetry surveys. For example, surveys at two different times are often used 
to estimate the volume loss to sediment during the period. Owing to time-consuming and expensive, bathymetry 
survey data is spatially sparse and often not publicly available (Foteh et al., 2018). Sedimentation rates can also 
be estimated through process-based models (Doten et al., 2006; Minear & Kondolf, 2009). However, the lack 
of sedimentation and auxiliary data for model calibration and parameterization often lead to high uncertainties 
in modeled estimates (Trimble, 1999). Empirical methods, such as the Modified Universal Soil Loss Equation 
(Weifeng & Bingfang, 2008; J. R. Williams & Berndt, 1977) or the Monovariate Rating Curve (Glysson, 1987), 
are derived from observed data informed by sediment physics and are widely used due to their computational 
efficiency. However, they suffer from representing catchment systems homogeneously and estimating outputs 
based on a single event (Pechlivanidis et al., 2011). Recent advancements combine land surface models with 
these empirical models to model space-time variability of sedimentation (e.g., Stewart et al., 2017). Limited data, 
calibration, and parametrization inhibit them from widespread applications.

Due to data scarcity and modeling uncertainties, researchers have attempted to estimate reservoir sedimenta-
tion rates using satellite-derived sediment fluxes in rivers flowing to reservoirs or lake bathymetry. River sedi-
ment load retrieved from satellite-observed turbidity can be combined with trap efficiency models (Brune, 1953; 
Moragoda et  al.,  2023) to predict the volume of trapped sediment in reservoirs (Condé et  al.,  2019; Dethier 
et al., 2020; Pham et al., 2018). However, remotely sensed estimates on river sediment load have insufficient 
spatial or temporal resolutions to estimate the total amount of sediment trapped in a reservoir (Condé et al., 2019; 
Gardner et al., 2023). Alternatively, satellite observations of time-varying water area changes and water level data 
(e.g., from in-situ gauges) can be combined to construct recent lake bathymetry and estimate storage losses (Foteh 
et al., 2018; Jagannathan & Krishnaveni, 2021; Pandey et al., 2016; Tesfaye et al., 2023). Foteh et al. (2018) used 
the constructed bathymetry from 30-m Landsat images and in-situ levels to estimate actual reservoir storage 
in 2017 and then compared it with the designed storage in 1975 to deduce the volume of trapped sediment in 
Jayakwadi Reservoir in India over the past five decades. However, most of these satellite-based attempts focused 
on analyzing one single reservoir (Table S1 in Supporting Information S1), lacking an accurate assessment of 
their applicability to regional scales. This limitation is crucial as it hinders our understanding of the variations 
in sediment rates, as well as the underlying sediment processes and environmental factors (Atulley et al., 2022). 
This is particularly concerning for two main reasons. First, is the uncertainty in mapped water area changes due 
to the relatively coarse spatial resolution of Landsat satellites and challenges in mapping water area changes 
due to factors, such as the disturbance of clouds, shadows, and aquatic vegetation. Second is that the derived 
lake bathymetry often only covers a small fraction of the full bathymetry due to insufficient frequency of cloud-
free  observations of Landsat satellites (e.g., monthly to yearly) in a given period. As a result, reservoir sedimen-
tation rates at regional to global scales remain largely unknown.

The European Space Agency's Sentinel-2 mission with two satellites launched in 2015 and 2017, respectively, 
observes Earth's surface at a 10-m resolution with a sub-weekly frequency. These satellites provide new oppor-
tunities for estimating lake bathymetry when combined with water levels. Compared to Landsat observations, 
Sentinel-2 enables mapping of water areas at higher spatial and temporal resolutions (Topaloğlu et al., 2016), 
which allows for more accurate estimates of water area changes at a wider range of water levels. In addition,  recent 
advances in satellite altimeters bring new opportunities to track water levels from space. More advanced radar 
altimeters, such as Sentinel-3 altimetry (2016—the present) and Surface Water and Ocean Topography (SWOT, 
launched in 2022), can observe water levels in both large and small water bodies (<10 to >100,000 km 2) with up 
to 10-cm accuracy at a sub-monthly frequency owing to advanced Synthetic Aperture Radar mode or wide-swath 
technology (Biancamaria et  al.,  2016). While satellite altimeters have the potential to substitute daily in-situ 
levels, however, whether the revisit frequency of satellite altimetry is sufficient for monitoring reservoir sedimen-
tation rates has never been tested.

Here, we develop and evaluate a novel approach for estimating reservoir sedimentation rates using 10-m Sentinel-2 
satellites and daily in situ water levels. We validate estimated sedimentation rates against reference rates from 
sedimentation surveys over eight reservoirs, with various sizes and other characteristics, across the central and 
western US. We test the performance of the proposed approach not only on continuous daily water level data, 
but also on filtered water levels via the revisit frequency of the Sentinel-3 altimeter. This study provides the 
first large-scale evaluation of satellite-based estimates of reservoir sedimentation rates and offers insights into 
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the feasibility of combining Sentinel-2 images with satellite altimeters for reservoir sedimentation studies when 
in-situ water levels are not available.

2. Materials and Methods
We identified eight reservoirs with sedimentation survey data for testing the performance of our proposed meth-
odology across the western and central US based on their sizes and geographic and climatic characteristics 
(Figure S1 in Supporting Information S1), as well as the availability of bathymetry survey data from the United 
States Bureau of Reclamation (USBR). For each reservoir, we first collected daily in situ water levels from gaug-
ing stations. Next, we mapped the initial water extents from Sentinel-2 images during the period 2015—2022. We 
ranked the initial water extents based on water level and refined water areas based on the topographic constraint 
of lake growth and shrinkage. The time-varying water areas and levels were combined to derive the lake bathym-
etry during 2015–2022, which was used to estimate the near-present storage capacity. Finally, we estimated the 
sediment volume and sedimentation rate based on the difference between the near-present storage capacity and 
the original maximum storage in design—shown in the schematic in Figure 1.

2.1. Obtaining Water Levels

Daily in situ water levels were obtained from federal agencies, including the United States Geological Survey 
(USGS), and the USBR (Table  1). As satellite-derived water level data are currently unavailable for studied 
reservoirs, we created another set of water levels through resampling the daily water levels at the temporal revisit 
frequency (27-day) of the Sentinel-3 altimeter. We selected Sentinel-3 because of its high resolution with a 
footprint size of 300 m, sub-monthly temporal frequency, and temporal record covering nearly entire Sentinel-2 
era (2015—2022) (Taburet et  al.,  2020). Sentinel-3-derived lake levels have a reported error of 0.2  m (Gao 
et al., 2019). We simulated this source of error in the 27-day water levels, assuming a uniform error distribution.

2.2. Mapping Water Areas

We followed the methodology from Yao et al. (2019) to map and refine water areas from Sentinel-2 images. The 
detailed procedures are introduced in Supporting Information S1. In brief, an ensemble of sets of initial water 

Figure 1. Illustration of reservoir sedimentation and storage capacity loss. (a) Reservoir profile with sedimentation 
highlighted. (b) Elevation-storage curve (i.e., stage-capacity curve) for original and recent periods. Differences in storage for 
the same elevation are the result of sediment-driven changes to reservoir bathymetry—described in Section 2.3.

Data set Spatial resolution Temporal resolution Temporal coverage Source or reference

Sentinel-2 images 10-m 16-day 2015 to the present Drusch et al. (2012)

In-situ water levels N/A Daily Varies USBR, USGS

Sentinel-3 altimetry 300-m 27-day 2016 to the present Donlon et al. (2012)

In situ bathymetry survey Sub-meter Irregular interval, once per 26 years on average Varies USBR

Table 1 
A Summary of Data Sets Used in This Study
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extents was mapped from different water spectral indices, including the Normalized Difference Water Index 
(NDWI) (McFeeters, 1996), the Modified Normalized Difference Water Index (Xu, 2006), the High Resolution 
Water Index (Yao et al., 2015), the 2015 Water Index (WI2015) (Fisher et al., 2016), and two Automatic Water 
Extraction Indices (AWEInsh and AWEIsh) (Feyisa et al., 2014) (see Table S3 in Supporting Information S1 for 
their configurations). The best set of initial water extents was identified as the one which water areas achieve the 
strongest correlation with water levels. Mapping errors in the initial water extents were further reduced based on 
the topographic constraint. The initial water extents were ranked based on the level. We assumed that each water 
extent with a lower water surface elevation should be completely enclosed by a water extent with a higher eleva-
tion. For each water extent, two higher isobaths were used to remove commission errors that were identified as 
portions of “water” beyond both higher isobaths, while two lower isobaths were used to correct omission errors 
that were identified as “islands” being inundated in both lower isobaths (Yao et al., 2019). Our method cannot 
map water beneath the capony of trees. To evaluate this source of error, we calculated the tree cover in historical 
maximum inundation extent (1984—2021) (Pekel et al., 2016) of each studied lake using recent high-resolution 
Google Earth images.

2.3. Constructing Lake Bathymetry

The water areas and levels were paired by time, resulting in area-level duplets. Each level was paired with the 
water area on the same day when the continuous daily water level data was used. However, when using the 
simulated altimetry levels, we matched each level with the water area mapped at the closest date within a week 
to balance the tradeoff between differencing time and the number of area-level duplets. These area-level duplets 
were used to calibrate the hypsometric curve using a smoothing spline fit to preserve the observations as much 
as possible. However, if the used water level data did not capture the minimum and maximum levels associated 
with full storage capacity, the hypsometric curve needed to be extrapolated. As the smoothing spline fits have 
limited predictive skill beyond the range of observations (Hastie et al., 2009), we used different fitting methods 
for hypsometry extrapolation. To extrapolate toward the maximum level, we used a linear fit and the slope was 
calculated as the overall slope of area-level duplets within either the uppermost 10-ft section or the uppermost 
section over half of the extrapolated height, whichever is larger. Only area-level duplets in the upper proportion 
(above the 50th percentile in level) were used considering possible slope variability in the lower proportion. To 
extrapolate toward the minimum level, that is, elevation of the streambed at the dam axis with a negligible water 
area (assumed as zero), we followed existing studies (Crétaux et al., 2016; Wang et al., 2018) and used quadratic 
polynomial fitting to minimize overfitting due to limited data points. The hypsometry extrapolation may intro-
duce additional uncertainty (Crétaux et al., 2016), which was assessed during the validation.

2.4. Estimating Reservoir Sedimentation Rates and Validation

We calculated the near-present storage capacity via the integral of the area-level curve 𝐴𝐴 𝐴(𝐴𝐴𝐴𝐴𝐴) from the mini-
mum water level (𝐴𝐴 𝐴𝐴0 ) to the maximum level (𝐴𝐴 𝐴𝐴max ) using Equation 1. The original storage capacity in design was 
obtained from the USBR reservoir reports, which was calculated based on a bathymetry survey near the dam 
completion year. The sediment-induced reservoir storage capacity loss was calculated as the residual between the 
original storage capacity in design and the near-present storage capacity (Figure 1b). The overall sedimentation 
rate was calculated as the amount of sediment volume per year relative to the original storage capacity. To vali-
date the estimated sedimentation rates, we generated reference sedimentation rates using the latest sedimentation 
survey for each reservoir. All studied reservoirs have at least one survey since 2005. The sedimentation survey 
data were collected from the USBR. Errors in sedimentation rates are assessed using absolute errors (AE) and 
normalized errors (NE) calculated as the ratio of the AE and full storage capacity.

Stoarage capacity = ∫
𝐿𝐿max

𝐿𝐿0

ℎ(𝐴𝐴𝐴𝐿𝐿)𝑑𝑑𝐿𝐿 (1)

3. Results
3.1. Evaluation of Satellite-Derived Bathymetry and Sediment Estimates

Satellite-estimated reservoir sedimentation rates show a mean bias of 0.05%  yr −1 (Figure  2), which is much 
smaller than the mean sedimentation rate (0.18%  yr −1) from survey data. However, the errors of estimated 
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sedimentation rate vary among reservoirs due to different accuracy of satellite-derived bathymetry. The derived 
bathymetry has a mean percent bias of 4.08%, with lowest in Lake Gibson (0.31%) and highest in Lake Sumner 
(15.66%) (Figure 3). Sedimentation errors are relatively large in Summer (0.14%), Cachuma (0.06%), Paonia 
(0.05%), El Vado (0.05%), and Horseshoe (0.03% yr −1) Lakes. For most (80%) of these reservoirs, the derived 
bathymetry has a percent bias larger than 3% (Table S2 in Supporting Information S1). There are a few factors 
contributing to the biases in bathymetry. First is the low exposure level of the bathymetry observed by satellites, 
particularly in high water levels. For example, the extrapolated fractions in the upper bathymetry are high in 
Lake Horseshoe (33%) and Lake Sumner (45%) (Table S2 in Supporting Information S1) and introduce large 
uncertainties (Figures 3e and 3f) (Crétaux et al., 2016). Second, there are trees in the riparian zone that are occa-
sionally submerged (Figure S2 in Supporting Information S1). The tree covers in the historical inundation area 
are the highest in Lake Horseshoe (3.1%) and Lake Sumner (2.7%) (Table S2 in Supporting Information S1). 
The mapping error due to tree disturbance is amplified when extrapolating a significant fraction toward the 
maximum reservoir level (Figures 3e and 3f). Third is the shifted lowest elevation (i.e., minimum level with a 
non-zero area) due to complete filling by sediment. The lowest elevations were shifted significantly in Paonia 
(76), Horseshoe (62), Sumner (48), and Cachuma (43 ft) Lakes. Lake Horseshoe is less impacted by this source 
of uncertainty because its new lowest elevation was observed by satellites (Figure 3e). The mean absolute error 
of sedimentation rates is 94.46 acer-ft yr −1 or 116,514.52 m 3 yr −1. Lake Sumner also has the largest absolute error 
(369.23 acer-ft yr −1), followed by Lake Cachuma (126.20), El Vado (107.02), and Horseshoe (58.89 acer-ft yr −1).

Despite the uncertainty, the patterns of estimated sedimentation rates and storage capacity losses are overall 
consistent with that of reference rates from surveys (Figure  2), suggesting the applicability of the proposed 
approach for estimating regional variability in sedimentation rates. For example, both satellite and survey 

Figure 2. Comparison of estimated sedimentation rates and storage capacity losses against reference data from surveys on eight reservoirs across the central and 
western US. Actual Error (AE) and Normalized Error (NE) are shown in each bar plot. NE was calculated as the ratio of AE and full storage capacity. AF is acer-ft and 
1 AF is equivalent to 1,233.48 m 3.
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Figure 3. Validation of satellite-derived bathymetric curve and storage capacity against bathymetry survey for eight US reservoirs. (a) Lake Clark Canyon, Montana, 
MT, (b) Lake El Vado, New Mexico, NM, (c) Lake Gibson, MT, (d) Lake Altus, Oklahoma, OK. (e) Lake Horseshoe, Arizona, AZ, (f) Lake Sumner, NM, (g) Lake 
Cachuma, California, CA, and (h) Lake Paonia, Colorado, CO. Shading in panel (a) represents the actual storage capacity based on the latest survey.



Geophysical Research Letters

YAO ET AL.

10.1029/2023GL103524

7 of 10

estimates indicate high sedimentation rates in Lake Paonia and Lake Horseshoe and lower sedimentation rates in 
Lake Clark Canyon and Lake El Vado. Lake Paonia lost 27% of its full storage capacity to sediment since filling, 
which is the highest among these reservoirs. In contrast, sediment-induced storage losses in Clark Canyon and El 
Vado are less than 5%. These estimates provide useful information of sedimentation rates and storage capacity 
losses for reservoir management and predicting future freshwater storage capacity.

3.2. Potential for Estimating Reservoir Sedimentation Using Satellite Imagery and Altimeters

Satellite altimetry provides an alternative to monitor inland water levels when in-situ measurements are unavaila-
ble. Here, we examine whether the 27-day observation frequency of Sentinel-3 altimeter is sufficient for estimat-
ing reservoir sedimentation. By testing on the simulated Sentinel-3 water levels, we found that estimated reservoir 
sedimentation rates from satellite data alone have a mean error of 0.05% yr −1 or 101.21 acer-ft yr −1, which is close 
to reported errors (0.05% yr −1 and 94.46 acer-ft yr −1) using daily level data. Estimated reservoir sedimentation 
rates from the 27-day levels are quite comparable to those estimated from daily in-situ levels with an R 2 value of 
0.995 and an RMSE of 0.01% yr −1 (Figure S3 in Supporting Information S1).

4. Discussion
Despite the significant issue of sedimentation, in-situ survey data is spatially sparse, inconsistent in time, and 
often is not publicly available nor up to date. The proposed method leverages high spatiotemporal Sentinel-2 
satellites (10-m, sub-weekly), recent advances in water area mapping (Yao et al., 2019), and daily in situ levels 
to estimate near-present reservoir storage capacity and lost storage to sediment thus far. Validated on eight US 
reservoirs, our method achieves a mean error of 4.08% in estimating the near-present storage capacity and a mean 
error of 0.05% yr −1 for sedimentation rates. Different from most existing satellite-based approaches focusing 
on analyzing a single reservoir (e.g., Foteh et al., 2018; Jagannathan & Krishnaveni, 2021; Pandey et al., 2016) 
(Table S1 in Supporting Information S1), our method reveals that sedimentation rates vary among reservoirs, 
which overall agrees with the pattern from survey data. Thus, the proposed method offers new insights into the 
regional variations in sedimentation rates under different environmental settings and sediment processes (Atulley 
et al., 2022).

A prerequisite for the approach presented here is a wide range of reservoir levels during the Sentinel-2 era in 
order to alleviate the uncertainty of hypsometry extrapolation, although Bayesian regression approaches (e.g., 
Ossandón et  al., 2021) may be employed to capture the uncertainty robustly. Extensive extrapolation in high 
water levels needs to be interpreted with care, particularly when compounded with additional disturbance of tree 
cover (Figure S2 in Supporting Information S1). Water levels in some reservoirs, for example, Lake Mead, on 
the Colorado River, were consistently low during recent years due to megadroughts (A. P. Williams et al., 2020; 
Xiao et al., 2018). Observations from Sentinel-2 are only able to capture water area changes in the lower storage 
proportion, which accounts for a small fraction of the full reservoir storage. We surmise that these reservoirs can 
only be estimated accurately once the drought conditions have eased and water levels are back to normal.

While this study primarily focuses on the total storage loss to sediment in reservoirs since their filling, the 
proposed approach may be applicable for estimating decadal variability in sedimentation rates when combined 
with longer-term Landsat missions. Visual examination of the results for Lake Horseshoe reveals new details on 
sedimentation over the past four decades (1983–2022) (Figure 4). For example, the lowest elevation has been 
elevated due to complete filling by sediment in near-bottom storage. The bathymetric curve shows a consistently 
downward shift over time. The sedimentation rate decreased over the period 1983–2022, which is possibly linked 
to the declines in total precipitation and extreme precipitation (Figure S4 in Supporting Information S1). This 
suggests that the estimated time-varying sediment rates and trends can be used to understand and predict freshwa-
ter storage capacity losses under ongoing climate change and other land disturbances such as landslides (Qiankun 
et al., 2022; Tsai et al., 2012).

This study also shows the possibility of estimating sedimentation rates in ungauged reservoirs by incorporating 
sub-monthly level measurements from recent satellite altimeters, such as Sentinel-3 and SWOT. Estimated reser-
voir sedimentation rates from simulated levels at the temporal frequency of Sentinel-3 are overall comparable 
to those estimated from daily in situ levels (Figure S3 in Supporting Information S1), indicating the potential 
of estimating reservoir sedimentation rates using satellite data alone. In particular, SWOT satellite can provide 
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sub-monthly water levels with 10-cm (1σ) accuracy for water bodies larger than 1 ha (Biancamaria et al., 2016). 
Therefore, the proposed framework for estimating sediment sequestration in reservoirs will become more valua-
ble when more high-quality water level products from satellites become available at regional to global scales. By 
estimating sedimentation rates in reservoirs nationwide and globally, the proposed novel method and potential 
extensions offer a powerful tool to inform water managers and policymakers on sustainable future freshwater 
supplies.

Data Availability Statement
The Sentinel-2 images were accessed from the Google Earth Engine platform at https://earthengine.google.
com. In situ water level data were obtained from the USGS at https://waterdata.usgs.gov/nwis and the USBR at 
https://data.usbr.gov/time-series/search. Sedimentation survey data were provided by the USBR. The produced 
reservoir bathymetry and sedimentation data, and validation results are available at https://doi.org/10.5281/
zenodo.8071451.
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